Global Water Watch toont aanwezigheid zoet oppervlaktewater overal op aarde

Deze maand gaat een tweejarig project van start waarin het Nederlandse Deltares, samen met het World Resources Institute en het World Wildlife Fund, een nieuw informatieplatform gaat bouwen dat precies laat zien hoeveel zoet oppervlaktewater er op elke plek op aarde is: Global Water Watch.

Met de informatie uit de Global Water Watch kan het water in de samenleving beter in evenwicht worden gebracht en kunnen overstromingen en droogtes die veroorzaakt worden door klimaatverandering, beter worden beheerst. Om dit evenwicht te helpen bereiken, zal de Global Water Watch openbare informatie verstrekken over beschikbare zoetwatervoorraden.

Global Water Watch wordt gratis toegankelijk en overheden en burgers kunnen er, online en via een app, informatie krijgen over waterstanden in hun regio.

Google heeft meebetaald aan het project.

De analyses worden in hoofdzaak gebaseerd op satellietmetingen van NASA en ESA, in combinatie met metingen ter plaatse

Deltares zal zich gaan richten op remote sensing en het ontwikkelen van machine learning-algoritmen (de ruwe data zijn zonder deze bewerking niet goed genoeg voor beleid).
De rol van WRI in dit project is om de eisen van de gebruikers in kaart te brengen en pilots te ontwikkelen.
WWF zal de vertaalslag maken naar belanghebbenden en zal de dialoog faciliteren binnen lokale gemeenschappen, die er gebruik van kunnen maken.

Onderstaande foto is een detail uit een grotere foto, die door de ESA (European Space Agency) gemaakt is door satellietopnamen met de Sentinel-1 van 03 en 15 juli 2021 te vergelijken, en daar kunstmatige intelligentie op los te laten. Op de foto zijn de overstroomde gebieden langs de Maas te zien ten Zuiden van Roermond.

Het Sentinel1-systeem bestaat uit twee radarsatellieten, die in een baan over de polen draaien. Zodoende zien ze de hele aarde onder zich door  draaien. Zie https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1 .

Bewerkte Sentinel1-beelden van 03 en 15 juli 2021

Deze  foto komt uit een goed artikel in De Ingenieur, dat te vinden is op http://www.deingenieur.nl/artikel/satellieten-gaan-waterstanden-monitoren . Daar is ook de volledige foto te vinden, die te groot is voor deze site.

Het IPCC-rapport in het kort op schoolse wijze (en in het Nederlands)

Locatie en structuur
Het IPCC-rapport Assessment Report 6 (AR6) is uit. Het is te vinden op https://www.ipcc.ch/assessment-report/ar6/ . Er is, met recht, veel aandacht aan besteed.
Een goede, beschrijvende tekst is van Rolf Schuttenhelm in De Correspondent ( Het IPCC heeft vijf toekomstpaden voor ons uitgestippeld. Welke gaan we kiezen? ) .
Een andere goede tekst is van Marcel aan de Brugh en Paul Luttikhuis en staat in de NRC ( Meer zelfvertrouwen bij klimaatwetenschap en andere artikelen in dat nummer.)

Het IPCC is een VN-organisatie.
Het IPCC doet zelf geen wetenschappelijk onderzoek, maat ontvangt duizenden klimaatstudies van over de hele wereld (voor  het nu gepubliceerde rapport 14000). Daarop komen in eerste en tweede lezing vele honderden commentaren binnen, die ook weer door honderden geleerden verwerkt worden. Het IPCC stimuleert, ontvangt, ordent, interpreteert en brengt uit, en dat alles in een sterk internationale context.
Dit hele proces is volledig transparant.

AR6 is het zesde Assessment Report in een reeks. Tussendoor heeft het IPCC ook nog thema-onderzoeken uitgebracht, zoals over de luchtvaart, het landgebruik en de poolgebieden.

Wat opvalt is de grote consistentie in de uitkomsten in de opeenvolgende AR’s. Nieuwere uitkomsten wijken nauwelijks af van eerdere uitkomsten over dezelfde grootheid. De uitkomsten worden alleen gedetailleerder en preciezer, en er ontstaat over steeds meer verschijnselen kennis.

Het IPCC heeft steeds drie werkgroepen, die elk een rapport uitbrengen.
Het rapport van werkgroep I gaat over de natuurwetenschappelijke grondslagen van het klimaat (The Physical Science Basis).
Het rapport van werkgroep  II gaat over de gevolgen van de klimaatverandering om je heen voor mens en natuur ( Impacts, Adaptation and Vulnerability).
Het rapport van werkgroep III gaat over technische, maatschappelijke en politieke maatregelen om die gevolgen, en de oorzaken ervan, te verminderen (Mitigation of Climate Change).
De reeks wordt afgesloten met een syntheserapport.

Voor AR6 is het rapport van werkgroep I dus nu net, in augustus 2021, uitgekomen. Rapport II komt in februari 2022 uit, rapport III in maart 2022. Het syntheserapport staat gepland voor september 2022.

Het Full Report van werkgroep 1 van AR6 (dat dus net uit is) omvat bijna  4000 bladzijden. Het bevat een Summary for Policy Makers (Samenvatting voor Beleidsmakers), een Technical Summary (Technische Samenvatting) en vervolgens het eigenlijke document.
Over de Summary for Policy Makers (SPM) is minutieus overlegd door een groot gezelschap geleerden en vertegenwoordigers van overheden. Niet over de wetenschap, maar over de formuleringen. Het eindproduct SPM is daarmee unaniem goedgekeurd (behoudens aanvullend layoutwerk). De SPM (41 kantjes) is daarmee op dit moment het formeel beschikbare document waaruit geciteerd kan worden. De rest moet nog in formeel overleg precies vastgesteld worden.

De SPM op zijn beurt bestaat uit een reeks uitspraken op drie levels (lagen), beginnend met A, A.1 en A.1.1 (enzovoort), die soms toegelicht worden door grafieken.
Gegeven de grote omvang van het geheel, en gegeven dat er al veel goede journalistieke verhalen op papier staan, kies ik voor een gestructureerde, zeg maar schoolse, weergave van de SPM (je bent natuurkundeleraar geweest, of je bent het niet). Ik geef de hoofdlevels A enz en de sublevels A.1 enz weer, en de belangrijkste grafieken. De sub-sublevels laat ik weg, maar die kan iedereen in het rapport nalezen. Veel van wat in de sub-sublevels staat, is in de grafieken terecht gekomen. Het is de eenvoudigste manier om in het kort de grote lijn weer te geven.

De Summary for Polici Makers
De hoofdlevels A,B,C.D zijn:
A. De huidige toestand van het klimaat
B. Denkbare toekomstscenario’s voor het klimaat
C. Klimaatinformatie ten behoeve van risicobeoordeling en regionale aanpassing (= werkgroep  II)
D. Het beperken van toekomstige klimaatverandering

De sublevels:

A.1 Het staat ondubbelzinnig vast dat menselijke invloed de atmosfeer, de oceaan en het land heeft opgewarmd. Wijdverspreide en snelle veranderingen in de atmosfeer, de oceaan, de cryosfeer en de biosfeer hebben plaatsgevonden.

Links het gereconstrueerde temperatuurverloop vanaf het jaar 1 tot nu, waarbij de periode 1850-1900 op 0 gedefinieerd is.
Rechts de uitsnede van 1850-2020 met en zonder de door de mens veroorzaakte temperatuurstijging.
Links (a) de temperatuurstijging sinds 1850-1900 die feitelijk gemeten is.
In het midden (b) een effect van gassen (1,5°C) dat wordt tegengewerkt door een aerosol-effect van -0, 4°C (zie ook Aerosolen door vliegen versterken klimaatopwarming, anders dan algemene beeld ). Daarnaast zeer kleine, maar onzekere natuurlijke oorzaken.
Rechts, vlnr, de opsplitsing van dat effect van gassen (1,5°C) en van aerosolen (-0, 4°C) naar CO2, niet-CO2-gassen uitgesplitst naar soort, en aerosolen, uitgesplitst naar soort

A.2 De schaal van de recente veranderingen in het klimaatsysteem als geheel en de huidige toestand van vele aspecten van het klimaatsysteem zijn ongekend over vele eeuwen tot vele duizenden jaren.

A.3 De door de mens veroorzaakte klimaatverandering heeft reeds gevolgen voor vele weer- en klimaatextremen in alle regio’s over de hele wereld. Sinds AR5 is er  steeds sterker bewijs voor waargenomen extreme veranderingen zoals hittegolven, hevige neerslag, droogte en tropische cyclonen en, in het bijzonder, de toeschrijving daarvan aan menselijke invloed.

A.4 De verbeterde kennis van klimaatprocessen, paleoklimaatgegevens en de reactie van het klimaatsysteem op toenemende radiative forcing leidt tot de beste raming van een uiteindelijke opwarming van het klimaat met 3°C, met een kleinere marge in vergelijking met AR5.

In de bovenste figuur (a):
links, de jaarlijkse CO2-emissies in diverse scenario’s en, rechts, de bijdrage van drie andere gassen aan het broeikasgaseffect (methaan, lachgas en zwaveldioxide).Let wel dat links Gt/y staat en rechts Mton/y .


In de onderste figuur (b):
Voor elk scenario de bijbehorende temperatuurstijging in 2100, linkse balk het totaal, daarnaast de bijdragen van CO2, andere broeikasgassen en aerosolen (dat zijn geen gassen). De donkere tint in een balk is ‘very likely’ = >90% kans, de donkere en lichte samen is de mediaan van de onzekerheidsbalk.


B.1 De mondiale oppervlaktetemperatuur zal volgens alle in aanmerking genomen emissiescenario’s tot ten minste het midden van de eeuw blijven stijgen. Een opwarming van de aarde van 1,5°C en 2°C zal in de loop van de 21e eeuw worden overschreden, tenzij de uitstoot van CO2- en andere broeikasgasemissies in de komende decennia sterk afneemt.

B.2 Veel veranderingen in het klimaatsysteem nemen direct vanwege de toenemende opwarming van de aarde toe. Daaronder een toename van de frequentie en intensiteit van hittegolven op land en op zee, van hevige neerslag, van landbouw- en ecologische droogte in sommige regio’s, van het aantal zware tropische cyclonen.
Om dezelfde reden nemen het Noordpoolijs, het sneeuwdek en de permafrost af.

B.3 Aanhoudende opwarming van de aarde zal naar verwachting de mondiale watercyclus sterk veranderen, inclusief de variabiliteit ervan, de wereldwijde moessonneerslag en de ernst van natte en droge gebeurtenissen.

B.4 In scenario’s met toenemende CO2-emissies zal de koolstofopslag in de oceanen en op het land naar verwachting minder effectief worden bij het vertragen van de accumulatie van CO2 in de atmosfeer.

B.5 Veel veranderingen vanwege broeikasgasemissies in het verleden en in de toekomst blijven eeuwen tot millennia onomkeerbaar, vooral veranderingen in de oceaan, ijskappen en het zeeniveau.

Vier natuurwetenschappelijke grootheden in vijf scenario’s.
De bij de scenario’s horende temperatuurstijgingen zijn ook in de figuur hierboven te vinden. De temperatuurstijging is t.o.v. 1850-1900.
Bij a), b), en c) staan onzerheidsbanden van >90%.
Een lagere pH in c) betekent dat de oceaan zuurder wordt.
De stippellijn n d) en e) betekent wat er kan gebeuren als de ijskappen instorten. Zie hieronder C3.

C.1 Natuurlijke oorzaken en interne variabiliteit komen bovenop door de mens veroorzaakte veranderingen, vooral op regionale schaal en op korte termijn, maar zullen weinig effect hebben op de opwarming van de aarde in de komende eeuwen.
Deze schommelingen moeten meegenomen worden om een indruk te krijgen van  het volledige scala van mogelijke veranderingen.

C.2 Bij verdere opwarming van de aarde zal elke regio naar verwachting steeds meer te maken krijgen met gelijktijdige en meervoudige veranderingen in klimaatfactoren. Verschillende veranderingsfactoren  zullen bij 2°C vaker voorkomen dan bij 1,5°C opwarming, en nog wijder vaker en/of uitgesprokener als het nog warmer wordt.

C.3 Minder waarschijnlijke gevolgen, zoals instorting van de ijskappen, abrupte veranderingen in de oceaancirculatie, enkele elkaar versterkende extreme gebeurtenissen en een opwarming die aanzienlijk groter is dan het geschatte stijging kan niet worden uitgesloten en maakt deel uit van de risicobeoordeling.

D.1 Vanuit natuurkundig oogpunt vergt de beperking van de door de mens veroorzaakte opwarming van de aarde tot een tot een specifiek niveau, een beperking van de cumulatieve CO2-uitstoot tot tenminste een netto-nuluitstoot van CO2, samen met een sterke vermindering van de uitstoot van andere broeikasgassen. Sterke, snelle en aanhoudende vermindering van CH4-emissies zou ook het opwarmingseffect beperken van afnemende aërosolverontreiniging en zou de luchtkwaliteit verbeteren.

D.2. Scenario’s met lage of zeer lage broeikasgasemissies (SSP1-1.9 en SSP1-2.6) leiden binnen jaren tot waarneembare effecten op broeikasgas- en aërosolconcentraties, en luchtkwaliteit, in vergelijking met hoge en zeer hoge scenario’s voor broeikasgasemissies (SSP3-7.0 of SSP5-8.5).
Bij deze contrasterende scenario’s zouden waarneembare verschiltrends van de mondiale oppervlaktetemperatuur zich binnen ongeveer 20 jaar beginnen af te tekenen van de natuurlijke variabiliteit, en over langere perioden voor veel andere klimaatfactoren.

 

Milieudefensie Eindhoven: waarom heeft Brainport geen duurzaamheidsplan?

Ten behoeve van de nasleep van de klimaatdemonstratie op 14 maart 2021 in Eindhoven zijn 15 regionale eisen geformuleerd. Twee daarvan waren:

  • een krachtig, collectief, circulair en innovatief duurzaamheidsbeleid van Brainport
  • streng toezicht op energiebesparingsverplichtingen voor de industrie

In de nasleep van deze demonstratie is besloten om te proberen per thema een werkgroep op te zetten. Dat is beperkt gelukt en het resultaat van deze twee eisen, in samengevoegde vorm, was de Werkgroep Verduurzaming industrie Brainport.

De eerste bezigheid van deze Werkgroep was om een brief aan de Stichting Brainport en Brainport Development NV te schrijven waarom Brainport als koepelorganisatie in het geheel geen duurzaamheidsplan had. Dit in tegenstelling tot andere clusters als de havens van Amsterdam, Rotterdam en Moerdijk, Chemelot en de Stichting Bedrijventerreinen Helmond.


Deze brief is op 05 september verstuurd aan Brainport, en op 05 en 06 september aan de Colleges van B&W en de fractievoorzitters en griffiers van de 21 gemeenten in het MRE-gebied.
Verder is een bericht naar de belangrijkste persorganen uitgegaan, Dit persbericht is hieronder, in licht aangepaste vorm, afgedrukt. Op het einde van de brief is de volledige tekst van de brief aan Brainport te vinden.

Inmiddels ligt er (al op 6 september!) een uitnodiging voor een gesprek van de directeur van Brainport Development NV. De Werkgroep had al gezegd een dergelijk gesprek op prijs te stellen en zal uiteraard op de uitnodiging ingaan.

Hieronder het persbericht en daaronder de volledige brief.

De tweede activiteit van de Werkgroep is een avond (09 september 2021) waarop een vakvrouw uitleg zal geven over de energiewetgeving voor bedrijven, en de handhaving daarvan. Er is nog zeer beperkt ruimte.



Het Eindhovense industrieterrein De Hurk, waar enkele goede maar geïsoleerde pilots aangekondigd zijn.

Milieudefensie Eindhoven: waarom heeft Brainport geen duurzaamheidsplan?

De Werkgroep verduurzaming industrie Brainport van Milieudefensie Eindhoven heeft de koepelorganisaties onderzocht van de havens van Amsterdam, Rotterdam en Moerdijk, van Chemelot (het vroegere DSM-terrein), en van de Stichting Bedrijventerreinen Helmond.
Deze koepels hebben allemaal zelfbindende duurzaamheidsplannen. Ze doen samen met zaken als energie, afvalwater, warmte, halfproducten, enzovoort.

Brainport daarentegen heeft  dat allemaal niet. Brainport is industriepolitiek, maar Brainport heeft geen duurzaamheidsplannen voor eigen gebruik.
Solliance werkt bijvoorbeeld binnen Brainport aan de ontwikkeling van dunne film-zonnepanelen, maar Brainport heeft geen collectief plan voor de plaatsing ervan bij de eigen bedrijven.
Brainport heeft bijvoorbeeld wel ambities om apparaten te bouwen die energie kunnen opslaan, maar toont geen ambities om die op de regionale industrieterreinen neer te zetten.

Brainport maakt ongetwijfeld producten en machines die duurzaamheid kunnen bevorderen – maar die zijn steeds bedoeld voor anderen. Brainport verkoopt en anderen verduurzamen.

pagina uit een ontwerp-brochure voor Solliance

Hierin onderscheidt Brainport zich van de eerder genoemde koepelorganisaties, die wel allemaal ambiëren om als collectief duurzaamheidsprestaties te leveren.

Brainport heeft wel de Sustainable Development Goals van de VN getekend. Dat blijft een abstractie, zolang het niet tot een eigen praktijk leidt.

Het ASML-gebouw in de verte (foto www.bjmgerard.nl)

De eisen
Milieudefensie Eindhoven heeft een open brief gestuurd naar Brainport en naar de regionale politiek, waarin de eis wordt uitgesproken dat de Stichting Brainport (en daarmee de daarvan deel uitmakende sectoren bedrijven, onderwijs en overheid):

  • de principiële erkenning uitspreekt dat een kennis- en bedrijvencluster als Brainport een deugdelijk duurzaamheidsplan op koepelniveau hoort te hebben
  • voorbeelden van andere grote industriële clusters als inspiratiebron hanteert
  • lopende, losse initiatieven op regionale bedrijfsterreinen meeneemt in de voorbereiding
  • een plan opstelt, of laat opstellen, dat uiterlijk december 2022 af is en in 2023 in werking
  • zich daarbij laat helpen, bijvoorbeeld door een bureau als CE Delft
  • er met alle ondersteunende middelen naar streeft dat de aangesloten bedrijven, onderwijsinstellingen en overheden het nieuw ontwikkelde PPP-plan gaan invullen.
  • op de website van Brainport Development ook een contactadres zet van de Stichting Brainport, die geacht wordt Brainport Development aan te sturen.

Hieronder de volledige tekst van de brief aan Brainport.


Aerosolen door vliegen versterken klimaatopwarming, anders dan algemene beeld

Afbeelding uit Lee, 2009, Atmospheric Environment, Aviation and Global Climate Change in the 21st century

Er stond op 20 augustus 2021 een artikel in de NRC van Marcel aan de Brugh “Pluspunt van de vuile lucht: koelte” ( https://www.nrc.nl/nieuws/2021/08/19/luchtvervuiling-heeft-ongemakkelijk-voordeel-een-koeler-klimaat-a4055345#/handelsblad/2021/08/20/#104 , mogelijk achter de betaalmuur).

Het verhaal, op basis van onderstaande figuur, heeft vier hoofdlijnen:

  • het artikel gaat over alle menselijke processen op aarde samen
  • Door alleen broeikasgassen zou de gemiddelde temperatuur op aarde al 1,5oC gestegen zijn, ware het niet dat aerosolen voor 0,4oC daling gezorgd hadden. Zo is het netto 1,1oC.
    Aerosolen zijn hele kleine druppeltes of korreltjes. Gasvormige luchtvervuiling (bijvoorbeeld stikstofoxides en methaan) zijn per definitie geen aerosolen.
  • luchtvervuiling is een kwaad dat in eigen recht bestreden moet worden. Er gaan per jaar voortijdig 3,3 miljoen mensen aan dood.
  • binnen de aerosolen en de gasvormige luchtvervuiling bestaat allerlei verschillende processen, die op elkaar kunnen inwerken. Sommige aerosolen werken opwarmend, andere verkoelend.


Aan de Brugh baseert zich op een figuur op blz 8 van de samenvatting:

Omdat ik hier vaak aandacht besteed heb aan de aspecten luchtkwaliteit en klimaat van het vliegen, wil ik enige duiding geven hoe dit specifieke standpunt (tevens dat van BVM2) in dit grotere IPCC-stadpunt past.

Zoals gezegd doet het IPCC uitspraken over alle menselijke activiteiten, waarvan de vliegsector een deel is. Dat deel is goed voor ca 2,5% van alle mensgemaakte CO2 op aarde, en voor ongeveer het dubbele daarvan aan niet-CO2 effecten. Dat is onlangs nog vastgesteld in een studie voor de Europese Commissie EC: niet CO2 – klimaateffecten vliegen dubbele van CO2 – effect (update)

Sterk versimpelend, met een voorbeeld: een vliegtuig beïnvloedt de directe omgeving met zijn emissies binnen bijvoorbeeld 20km van een vliegveld op lage hoogte, en zit daarna 2000km op grote hoogte, het grootste deel van de tijd op 10 a 11km.
Binnen de 20km zijn vooral de luchtkwaliteitsaspecten van belang (stikstof- en zwaveloxides, volatile organic compounds als formaldehyde, organic en black carbon – in de volksmond roet). Als men, bij overigens gelijke omstandigheden, de longen van omwonenden wil beschermen moet er geen zwavel in de kerosine zitten en moet er zo weinig mogelijk roet uitkomen. Beide pleiten voor bio- of synthetische kerosine.
Bij het grootste deel van de tocht is vooral het klimaat van belang. Op 10km hoogte is de lucht ijl, is er het begin van de ozonlaag en is het -40oC. De balans in die specifieke omstandigheden ziet er anders uit als de gemiddelde balans in de IPCC-figuur. Het dominante effect op grote hoogte bestaat uit contrails (‘strepen’), die op de langere termijn verwaaien tot cirrusbewolking. Die cirrusbewolking werkt netto opwarmend, omdat hij overdag ruwweg evenveel straling omhoog als omlaag kaatst, en ’s nachts alleen maar omlaag. Het koelende zwavelaerosolen-effect is in dit geval van ondergeschikt belang. Omdat roet goede condensatiekernen maakt voor de onderkoelde waterdamp in de uitlaatgassen, begunstigt roet de vorming van strepen en cirrus. Daarom is, in overigens gelijke omstandigheden, brandstof beter die weinig of geen roet uitstoot en ook dan kom je op bio- of synthetische kerosine uit. Onderstaand overzicht (Lee, 2020) geeft een balans, die je kunt vergelijken met de IPCC-balans, maar dan alleen voor het vliegen.
Men zou zelfs de zwavel, die niet in synthetische kerosine zit en wel in gewone kerosine, als sulfaat kunstmatig op grote hoogte uit een apart tankje kunnen spuiten (dan hebben de longen er aan de grond geen last van), maar dan ben je met een omstreden geo-engineeringproject bezig. Als je hetzelfde doet door op zwavelhoudende kerosine te vliegen, heet het geen geo-engineering en hebben de longen er aan de grond wel last van.

Mijn beweringen over luchtkwaliteits- en klimaataspecten zijn dus niet in tegenspraak met het IPCC-rapport 2021.
Dat is overigens een goed rapport dat de mensheid zich ter harte moet nemen, maar die bespreking moet op een ander moment.

Ozonprotocol Montreal bespaart ons nog ergere klimaatopwarming

Het was er niet voor bedoeld, maar het verdrag van Montreal van 1987 om de ozonlaag tegen afbraak te  beschermen gaat ons eind deze eeuw mogelijk 0,5 – 1°C aan mondiale klimaatopwarming schelen.
Aldus James Temple in de MIT Technology Review van 19 augustus 2021.
Temple vraagt zich af waarom de agressieve aanpak die het Montreal Protocol mogelijk maakte, niet ook kan bij het klimaat.

Temple baseert zich op een studie in Nature van 18 augustus 2021, waarvan de abstract te vinden op https://www.nature.com/articles/s41586-021-03737-3. De studie zelf zit achter de betaalmuur.
De Nature-studie noemt twee effecten: de directe werking van chloorfluorkoolwaterstoffen (CFK’s) als broeikasgas, en de vegetatieschade die zonder de ozonlaagbescherming ontstaan zou zijn.

Het ozongat op 10 sept 2019 (KNMI)

De directe werking
Veel CFK’s zijn zelf krachtige broeikasgassen.
De EU-verordening 517/2014  dd 16 april 2014  heeft een Annex waarin de GWP-waarden van alle CFK’s genoemd staan. Dat is hoeveel keer zo sterk de CFK is als CO2. Getoond is het begin van een lijst van vijf kantjes. Wie de hele lijst wil zien, kan de verordening vinden op https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.150.01.0195.01.ENG .

Dit directe effect is al langer bekend.

(Het record met 22800 zit bij zwavelhexafluoride ( SF6, verderop op de lijst), dat zelf geen CFK is, maar zich wel net zo gedraagt. Die stof wordt overigens veel gebruikt in installaties waarin midden- en hoogspanningen optreden, van de elektronenmicroscopen van FEI tot het elektrische deel van windturbines of schakelinrichtingen. De stof komt daaruit in de atmosfeer, maar vooralsnog in zulke kleine hoeveelheden dat de broeikaswerking ervan klein is).

De indirecte werking via schade aan planten
Dit is de nieuwe informatie die het Nature-artikel geeft.

De onderzoekers hebben ingeschat wat het effect is geweest van de UltraViolet (UV)-straling die door het Montreal-protocol niet op het aardoppervlak is aangekomen, en die dat anders wel was. Dat is een ingewikkelde klus.

UV-licht beschadigt, naast mensen, ook planten.Hoe dat gebeurt, was ook al langer bekend, maar nu is er dus een klimaatschatting aan toegevoegd. 
Die luidt dat het verschil bestaat uit 325 tot 690 miljard ton koolstof in planten en bodem in de periode 2080 – 2099, equivalent met 115 – 235ppm CO2 in de atmosfeer.
En dat is weer goed voor 0,5 tot 1°C minder stijging van de gemiddelde oppervlaktetemperatuur op aarde.

Waarom kon met de ozonlaag wel wat met het klimaat veel slechter lukt?
Temple baseert zich hier op een boek van Edward A. Parson ‘Protecting the Ozone Layer: Science and Strategy’.

De algemene gedachte tot dan toe was dat een verdrag tegen CFK’s simpeler was. Die vond je in een beperkte set toepassingen (ook al zaten die dan weer in ontelbaar veel apparaten), en er waren maar een paar producenten, waarvan een bedrijf als DuPont een belangrijke speler is.

Parson vond dat de klimaaturgentie reden was om nog eens terug te blikken op het Montrealprotocol. Hij stelt dat het uitfaseren van de CFK’s niet zo simpel was als nu vaak gedacht wordt van wege het economisch belang.
Het vaak gehoorde idee dat de industrie al commercieel levensvatbare producten klaar had liggen en daarom instemde berust op een misverstand. Het was andersom: die alternatieven kwamen er pas toen de dwang toenam. En toen bleek het snel te kunnen, met als gelukkige bijkomstigheid dat er aan de alternatieven ook te verdienen viel.
De les is dan ook dat de wereld niet moet wachten tot er goedkope en makkelijke innovaties zijn voor de klimaatverandering. De industrie moet gedwongen worden met regels die dwingen tot minder emissies en schoner werken.
De tweede les is dat er sectorbrede voorschriften moeten komen, zodat alle bedrijven in alle landen zich aan dezelfde voorschriften moeten houden (bijvoorbeeld staal en cement).

Maar, zegt Parson, de vergelijking met de fossiele brandstof-sector houdt hier op.
DuPont kon in essentie blijven doen wat het al deed, en de fossiele brandstof-sector niet. Die heeft wel verhalen over CO2-afvang, bosprojecten en andere projecten ter compensatie, of koolstof  uit de lucht zuigen, maar talloze studies wijzen uit dat je er geen staat op kunt maken dat ze dat betrouwbaar en geloofwaardig doen, verifieerbaar en langlopend.

Het Montreal Protocol toont opnieuw aan dat er internationale regels nodig zijn om het gedrag van mondiale ondernemingen te reguleren, en dat dat  strikt  en consistent afgedwongen moet worden. Dan gaan die ondernemingen zich aanpassen, mogelijk zelfs met een nieuw bloeiend bestaan tot gevolg.

De Spiegelwaal

Ter inleiding
Bij elke duizendste bezoeker aan deze site schrijf ik een artikel met een persoonljjke noot dat een beetje afwijkt van wat hier main stream is. Dit artikel is voor de 28000ste.
Ik was op 29 juli 2021 in Nijmegen, de stad waar ik van 1965 tot 1973 natuurkunde gestudeerd heb. Het centrum van Nijmegen blijft al heel lang het centrum van Nijmegen, maar de Waal en het gebied aan de overkant zijn totaal veranderd. Er is een regelbare parallelrivier gegraven, de Spiegelwaal, om het waterpeil in de Waal beter te kunnen beheersen.
Een klimaatadaptatieproject, voor een keer buiten mijn gebruikelijke focusgebied Brabant.

Waal (rechts) en Spiegelwaal (links) (foto bjmgerard@gmail.com)
Zesbaks-duwvaart

Helemaal buiten de main stream op deze site is het onderwerp nu ook weer niet, want het bezoek (met wat foto’s, die ik hier show) was twee weken na de overstromingen in delen van Belgie en Duitsland en Zuid-Limburg. De Waal stond nog hoog (niet extreem). Zie Waarom de Limburgse overstroming een klimaatcomponent had en hoe dat werkt .
Iemand in de krant beweerde dat als het noodweer zich honderd kilometer naar het westen had voorgedaan, alle water via de Maas had moeten worden afgevoerd (nu pakte het stroomgebied van de Rijn, dus ook de Waal, een deel mee), en dat dan met zekerheid grote delen van Limburg wel onder water gestaan hadden. Ik kan het niet zelf verifiëren, maar het klinkt plausibel.

Aan de oorsprong van dit project liggen het Plan-Ooievaar en het Plan Levende Rivieren, een plan van WNF uit 1992. Hierin staat het herstel van nevengeulen centraal, met de natuurlijke rivierbiotoop.
Na de bijna-overstroming van het Rivierenland in 1993 op 31 januari 1995 (toen een kwart miljoen mensen tijdelijk, uit voorzorg, geëvacueerd moest worden) is dit concept opgenomen in de Planologische Kern Beslissing ‘Ruimte voor de rivier’ dd 2007, een programma van Rijkswaterstaat (RWS), (zie https://nl.wikipedia.org/wiki/Ruimte_voor_de_rivier ). De Spiegelwaal is een van de 34 maatregelen in dit RWS-programma.
Het totale budget van de PKB was 2,3 miljard euro, en het Nijmeegse deel ervan kostte 0,36 miljard Euro. Het was het grootste en ingewikkeldste project van alle.

Hoe werkt het?
De Nijmeegse werkzaamheden zijn technisch ontworpen door het bureau Trafique ( http://www.trafique.nl/projecten/i-lent ). Onderstaande tekeningen van hun website.
Trafique werkte samen met H+N+S Landschapsarchitecten.

De Waal stroomt van rechts naar links (Oost naar West).
De Noordelijke tak is de Spiegelwaal, de zuidelijke de eigenlijke Waal zelf. Tussen beide in ligt een nieuw eiland dat vroeger bij Lent hoorde en nu Veur-Lent heet.
Onder de Waal de binnenstad van Nijmegen en boven de Spiegelwaal het dorp Lent.
De Oostelijke brug is de klassieke Waalbrug voor auto’s en fietsen-voetgangers, die er al lang ligt (en die een rol speelde in de One bridge too far-opmars), de middelste brug is de spoorbrug waarlangs recentelijk ook een fietsroute is gelegd, de westelijke brug voor auto’s en langzaam verkeer is nieuw (en was onder andere nodig omdat de Oostelijke brug een tijd dicht moest).
De drempel, die de waterstand in de Spiegelwaal reguleert, ligt rechts op halve hoogte in de tekening en vormt het oostelijke uiteinde van de Spiegelwaal.
Voor de Spiegelwaal moest de dijk aan de Noordkant 350m naar binnen verlegd worden. Dat betekende het verlies van 50 huizen en bedrijven.

In de drempel zitten op verschillende hoogten een soort tunnels. Hierdoor stroomt er, afhankelijk van de waterstanden, meer of minder water uit de Waal de nevengeul in. Zo wordt de Spiegelwaal altijd door stromend water uit de Waal gevoed. Als de Rijn bij Lobith 13m boven NAP staat, stroomt het Waalwater over de drempel de Spiegelwaal in.

Wat heeft Nijmegen er zelf aan?
De haakse bocht werkte tot de Spiegelwaal bij hoog water als flessehals. In Nijmegen loopt sinds mensenheugenis bij hoog water de Waalkade onder water. De stad is er op ingericht.
De Spiegelwaal werkt vooral gunstig voor het waterpeil stroomopwaarts (dat  blijft 34cm lager). Nijmegen heeft zelf voor zijn waterveiligheid meer aan maatregelen die verder stroomafwaarts genomen worden.

Maar maatregelen tot klimaatadaptatie kunnen ook positief uitpakken en dat is hier gebeurd. Per saldo heeft Nijmegen er, pal naast zijn stadscentrum, een multifunctioneel recreatiegebied bij met mooie landschappelijke effecten.

Spiegelwaal met recreatieve infrastructuur (foto bjmgerard@gmail.com)
Wandelpad  (foto bjmgerard@gmail.com).
De kolencentrale van Weurt op de achtergrond is inmiddels gesloten.

Er zijn strandjes en in de Spiegelwaal is een omheind zwembad  aangelegd (het officiele Nijmeegse voorlichtingsmateriaal raadt zwemmen in de Waal zelf af, omdat de kans te groot is dat men dan in Rotterdam opgedregd wordt), en op het eiland ligt een mooi wandelpad. Er liggen inmiddels geliefkoosde hardlooprondjes.
En het is landschappelijk gewoon erg mooi.

Woningbouw in Veur-Lent
Inmiddels is het nieuw-ontstane eiland een unieke bouwlocatie geworden (aangenomen dat alles goed uitgerekend is en het eiland ook bij extreme toekomstige waterafvoeren droog blijft). De gemeente wil er graag woningen bouwen. Daar is op zich ruimte genoeg voor en mogelijk is de bouwgrond inmiddels veel waard geworden.
Maar er heerst nu op een apart sfeertje en dat wil het groepsgevoel eigenlijk wel zo houden, dus hangen er nu overal affiches met enge hoge flats waarvan niet duidelijk is in hoeverre die affiches representatief zijn voor de daadwerkelijk voorgestane woningbouwplannen.

Gezicht op  Veur-Lent vanaf de oude Waalbrug (foto bjmgerard@gmail.com)

Het standpunt van de zittende bewoners is vanuit hun perspectief te volgen en je moet in een dergelijke setting architectonisch niet alles willen, maar ik vind dat het, gegeven de woningnood, toch iets te veel van groepsegoisme weg heeft. Aan de andere kant is ook gentrificatie mogelijk.
Het lijkt mij verstandig dat de gemeente Nijmegen hier wijs mee om gaat.

Van Ibis tot halsbandparkiet, van alles te zien in Overvecht! (update 17 aug 2021)

(Dit artikel is een redactionele bewerking van een artikel uit mei 2018, met een flink stuk aanvulling op basis van nieuwere informatie)

Mijn zwager woont 10-en-een half hoog in een flat in de Utrechtse wijk Overvecht-Zuid. Mijn vrouw en ik hadden er begin mei 2018 een genoeglijk familiebezoek. De ontvangst was prima.

Mijn zwager kan als het ware vanaf zijn flat een aanschouwelijke cursus geven in renovatie en moderne energietechnieken, vooralsnog experimenteel.
Als je de ene kant opkijkt zie je de Arabelladreef-flat van de woningbouwvereniging Portaal, die levensloopbestendig gerenoveerd is en tientallen zonnepanelen op zijn platte dak heeft.
Kijk je de andere kant op, dan zie je de experimentele energie-aanpassingen aan de Henriettedreef, met een Ibis Powernest op het dak (vooralsnog demo).


Om de hoek ligt de Camera Obscuraflat, waar een energieneutrale pilot gerealiseerd is waarover ik al eerder geschreven heb (zie Nul op de Meter – woningen ).
Kijk je omlaag, dan zie je in de boomkruinen in de urban jungle aan je voeten een hele zwerm halsbandparkieten.

Kortom, er valt van alles te zien in Overvecht-Zuid.

Dit alles is nog kleinschalige Spielerei. Het echte werk moet plaatsvinden in de aangrenzende wijk Overvecht-Noord, waar in 2030 de gasleidingen vervangen moeten worden. De bedoeling is dat er geen gasleidingen terugkomen en dat roept een hoop vragen op bij de bewoners, vooral over waar ze dan aan in plaats van af moeten. Zie www.utrecht.nl/wonen-en-leven/duurzame-stad/energie/utrecht-aardgasvrij/overvecht-noord-aardgasvrij/ .

Maar ik wil het nu hebben over de Henriettedreef van de woningbouwvereniging Bo-Ex, want die experimenteert nu het interessantste.

De Henriettedreef
Bo-ex wilde regulier groot onderhoud doen aan deze flat. Er moesten nieuwe kozijnen met warmtewerend glas in, waardoor  vocht en tocht tot het verleden gingen behoren en de flats  ‘s zomers 2 graden koeler moesten worden. Om schimmel tegen te gaan, kregen bewoners een mechanisch- en vraaggestuurd ventilatiesysteem. De isolatie werd verbeterd. Door dit alles zou het energielabel van C/D naar B gegaan zijn.

Naast deze conventionele maatregelen wilde het consortium zeer experimentele maatregelen, die, bovenop het B-label, de flat energieneutraal of beter maken.

Bo-ex wilde experimenteren richting energieneutraal in 2019 en ging samenwerken in het consortium Inside Out, met daarin, naast Bo-ex, Nefit-Bosch Thermotechniek, Alkondor Hengelo, Bos Installatiewerken, LomboXnet, architectenbureau cepezed, Universiteit Utrecht en Hogeschool Utrecht, onder leiding van het Utrecht Sustainability Institute. Het project is mede gefinancierd door TKI Urban Energy uit de Toeslag voor Topconsortia voor Kennis en Innovatie (TKI’s) van het Ministerie van Economische Zaken.

Inside Out renovatiesysteem
Inside Out integreert installatiecomponenten zoals verwarming, ventilatie, isolatie en warm water tot drie multifunctionele bouwdelen en combineert deze met duurzame energieopwekking en lokale energieopslag in elektrische deelauto’s. De bouwdelen worden aan de buitenzijde van de flat geplaatst, vandaar de naam ‘Inside Out’. Dankzij duurzame energieopwekking en lokale energieopslag vermindert de piekbelasting op het net en profiteren bewoners van lage woon- en mobiliteitslasten. Het project betrekt nadrukkelijk bewoners bij het project; het gaat immers over hun woning. Tot slot wordt gewerkt aan de bijpassende financierings- en verdienmodellen. Het Inside Out-systeem wil zo een bijdrage leveren aan de seriematige renovatie van 250.000 hoogbouwwoningen tot energieleverende wooncomplexen in Nederland
.


De flat (58 woningen) heeft een grote kopse kant op het Zuidwesten. Daar zijn als eerste maatregel al een paar jaar geleden 108 zonnepanelen tegen aan geplakt en een display. Deze zonnewand is relatief groot en ziet er spectaculair uit, maar is tegenwoordig standaardtechniek.


Update dd 17 aug 2021
Een chronologisch overzicht is te vinden op https://tki-inside-out.nl/duurzame-renovatie-henriettedreef/ . Op 26 april 2018 (dus voordat de feitelijke renovatie annex opwaardering begon) is daar het eindoverzicht van de eerste fase te vinden, met cijfers.
De Henriettedreef is een Intervam-flat. Daar zijn er heel veel van in Nederland.
Het eindoverzicht noemt 55000 appartementen (500 a 1000 flatgebouwen) in verschillende systeembouwtypes waaronder Intervam, die op marktcondities op deze wijze aangepakt kunnen worden.
De meerprijs van de energieneutraliteit t.o.v. alleen maar een label B-renovatie bedraagt 38 tot 50 k€ per appartement.

Inmiddels is de renovatie voltooid. Het energiesysteem waarmee men begonnen is is niet meer dat waarmee men uiteindelijk geëindigd is. Maar het was dan ook een experimenteel proces.
Bij het begin van het proces stond er een IBIS Powernest op het dak (een combinatie van een kleine vertikale as-windmolen in een kubusachtig gebouw, bedekt met zonnepanelen).  Uiteindelijk is het Powernest verdwenen. De gemaakte afwegingen worden niet vermeld.
Als ik nu (juli 2021) vanaf het balkon van mijn zwager naar de Henriettedreef kijk, zie ik deze constructie:

Henriettedreef, Utrecht
Stalen dakconstructie voor zonnepanelen met daraonder warmtepompen

De typische dakconstructie bestaat helemaal uit zonnepanelen. Ook de gevels en de balkonafschottingen wekken energie op.
Onder de dakconstructie staan warmtepompen.
De flat is all-electric met lage Temperatuur-verwarming. Er is geen aansluiting meer op de stadsverwarming of het gas.

Een persbericht van dat men bezig is modulaire gevelelementen te plaatsen: https://boex.nl/News/3452/eerste-slimme-gevel-geplaatst-henrittedreef .

Het persbericht na voltooiing is te vinden op www.boex.nl/News/4146/eerste-energieleverende-hoogbouwflat-aan-de-henrittedreef-in-utrecht-opgeleverd–persbericht .
Het persbericht presenteert onderstaande foto:

Henriettedreef, Overvecht, Utrecht na oplevering renovatie en energieconstructie

Er staan een kwart miljoen vergelijkbare hoogbouwflats in Nederland.


IBIS Power
IBIS Power heeft het “powernest” ontwikkeld. Dat is een combinatie van een kleine Darieus/Savonius vertikale as-windturbine, die in een soort kubus zit met daarin sleuven die turbulentie verminderen en de wind concentreren.  Op de kubus is plaats voor zonnepanelen.
Het ontwerp is dus modulair.

Schema van IBIS Powernest

Zie www.ibispower.eu .

Op de Henriettedreef-flat staat vooralsnog een experimenteel exemplaar van 700W met één zonnepaneel van 295Wp.
De standaardversies heten Powernest 1.0 en idem 2.0 .

Het is allemaal kakelvers en dus is het nog niet mogelijk veel over de prestaties te zeggen. Op de website staat een filmpje, waarin de directeur spreekt over een voorlopig onderzoek van 11 augustus t/m 31 oktober 2017 (samen 81 dagen). De afbeeldingen zijn stills uit het filmpje.

Gemeld moet worden dat het in Utrecht relatief niet hard waait.

Prijzen worden niet genoemd.

Volgens het bedrijf zijn de bewoners tevreden en hebben ze geen last van herrie of trillingen.

Windsnelheid- en opbrengst van de demoversie op de Henriettedreef van 11aug-1 nov 2018

Zie de afbeelding hierboven.
Te zien is dat de machine begint te draaien bij een windsnelheid van 2,0 m/sec. Het is lastig om in deze figuur te schatten wat de gemiddelde opbrengst is (rechteras), maar die zal ergens rond de paar tiende kWh per dag zitten. Ik reken even met 0,3 kWh/dag, dus ergens rond de 110kWh/jaar.

Onderstaande grafiek geeft de gemeten opbrengst voor zon en wind samen. Even met de natte vinger 400kWh per jaar (dus het meeste van de zon).

Opbrengst van zon en wind samen op de Henriettedreef van 11 aug tot 1 nov 2018

Dat is niet veel, maar het is dan ook een demo-machine. Zou je hetzelfde doen met de zwaardere Powernest 2.0 , dan moet dat volgens het bedrijf 13200 kWh/jaar opleveren (zie hieronder). Ik kan de omrekening van het kleine naar het grote niet controleren, maar ik denk dat het van zon en wind samen is en dat de meeste energie van de zonnepanelen op de module komt.

Prognose wat de Powernest 2.0 zou opbrengen

Per Henrietteflat zou één full scale Powernest 2.0 – module dus zo’n 225kWh per jaar leveren. Samen met de vertikale wand moet men dan op ca 650kWh per flat per jaar uitkomen.
Misschien kan men meer Powernesten installeren, maar dat hangt van teveel factoren af waar ik geen zicht op heb.

Ik ben tot nu toe sceptisch over kleine windturbines en vooralsnog heeft de IBIS Powernest mij daar nog niet van afgeholpen. Het voornaamste effect zou wel eens kunnen zijn dat het overstekende dak van de module meer plaats biedt aan zonnepanelen als anders het geval zou zijn geweest.

Milieu Centraal noemt als gemiddeld stroomverbruik voor een eenpersoons huishouden 1930kWh/y en voor een tweepersoonshuishouden 3010kWh/y . Daar komt de stroom nog bij voor de verwarmingsinstallatie (moet vroeg of laat een warmtepomp worden met warmte-koude opslag), de lift, de noodverlichting etc. Met alleen een IBIS Power 2.0 en een heleboel zonnepanelen en opwaardering tot label B komt men er bij de Henriettedreef-flat niet.
Maar het consortium heeft nog meer onconventionele plannen. Voor een totaaloordeel is het nu te vroeg.

Aanvulling dd 12 mei2018: in een artikel in Duurzaam Gebouwd van januari 2018 wordt door de directeur voor de Powernest 2.0 een prijs genoemd van €55000 .
Hij noemt daar een energetische opbrengst aan zon en wind samen van tussen de 19000 en 30000kWh per jaar. Dat is na een verbetering van de prestatie met 30%. Die 13000kWh uit de tabel zal dan wel een wat ouder cijfer zijn.

De windunit van de IBIS vóór plaatsing op de Henriettedreef

Waarom de Limburgse over-stroming een klimaatcomponent had en hoe dat werkt

De overstroming
Ten tijde van dit artikel stond het aantal doden van de overstroming in Limburg, België en Duitsland op ongeveer 200, en is er voor miljarden schade aangericht. Alleen al in de gemeente  Valkenburg werd de schade getaxeerd  op 400 miljoen euro.

Wat opviel is dat er veel regen per uur viel, dat de regen lang viel, en dat het buiencomplex zich nauwelijks verplaatste.

Meteen al werd gezegd, ook door politici en bestuurders, dat de ramp een klimaatcomponent had. Dat is ook zo (en de kans op herhaling neemt dus toe). Maar waarom is dat zo en hoe zit het mechanisme in elkaar?

(Spoorlijn in Limburg in juli 2021 – foto Prorail)


Wie een situatierapportage wil zien op Nieuwsuur van 17 juli 2021, en Kuipers Munneke die het uitlegt, kan terecht op https://nos.nl/nieuwsuur/video/2389772-hoe-speelt-klimaatverandering-een-rol-bij-de-watersnood-in-limburg .

EPP’s en SEPP’s
Eerst even een citaat.

Our results suggest that storms will have higher peak intensity, longer duration and will be more frequent across the whole of Europe. Current storms already produce a large number of flash floods, with their potential impact depending on land use, terrain slope, drainage, and other factors. SEPP increases would significantly increase this flash flood potential, as an MCS would be more likely to “stagnate” on a locality, exposing it to extreme precipitation of longer duration.”.

Dit is geen beschrijving  van ‘Limburg’, maar een wetenschappelijke analyse die er toevallig net aan vooraf ging. Het citaat komt uit de studie “Quasi-Stationary Intense Rainstorms Spread Across Europe Under Climate Change” en stond in de Geophysical Research Letters van 16 juli 2021. De studie is open access en te vinden op https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL092361 (en daar .pdf te downloaden). De hoofdauteur is Abdullah Kahraman van de Universiteit van Newcastle.
De timing klinkt helderziend, maar er is veel wetenschap op dit gebied en de statistische kans dat een nieuw artikel samenvalt met een ramp wordt steeds groter.
Kahramans onderzoeksgebied is het grootste deel van Europa en de Middellandse Zee, maar men kan voor Canada en de VS vergelijkbare uitspraken doen.

Het verhaal bevat veel meteorologenvaktaal en is daarom taai om te lezen. Als je je best doet, krijg je er toch wel iets van mee.
Een MCS is een Mesoscale Convective System. Dat is een al eerder gedefinieerde vakterm en is een georganiseerd cluster van onweersbuien, dat ten minste enkele uren aanhoudt en een aaneengesloten neerslaggebied vormt. Op onze breedtegraden is zo’n ding typisch 100km groot en houdt het minstens drie uur uit, hoewel het bijbehorende wolkendek nog langer kan bestaan.

Wie zonder vaktaal een indruk wil krijgen en ook een reactie van het KNMI wil lezen, kan ook op een goed artikel in de NRC terecht, op www.nrc.nl/nieuws/2021/07/18/buien-zullen-vaker-lang-blijven-hangen-a4051551#/handelsblad/2021/07/19/#106/ .

Kahraman heeft geprobeerd in te schatten wat er uit zo’n complex kan komen en hoe groot de kans is dat dat, nu en in de toekomst, gebeurt. Nu zijn dit complexe verschijnselen en niet alle water, wat in zo’n systeem zit, haalt daadwerkelijk de grond (kan onderweg ook weer verdampen), dus heeft hij een vereenvoudigd begrip Extreme Precipitation Potential (EPP) gedefinieerd, zijnde een systeem waarin de luchtvochtigheid en de stijgsnelheid binnen het buiencomplex minstens drie uur  boven bepaalde drempels zit.
Als een EPP ‘Slow-moving’ is (‘slow’ is, versimpeld uitgedrukt, < 3m/sec) is de EPP in praktijk quasi-stationair (de titel van het artikel) en heet het een SEPP.
Limburg e.o. was dus de praktijkuitvoering van het geIdealiseerde begrip SEPP.

Vervolgens heeft Kahraman er als randvoorwaarde klimaatscenario RCP8.5 ingestopt. Dat is een heftig  scenario, op basis waarvan het in 2100 4,3°C warmer wordt. De wereld streeft ernaar om een stuk minder op te warmen en het is goed om dat als relativerende kanttekening bij het artikel te plaatsen.
Het zo aangestuurde rekenmodel rekent over de 10 jaar 1998 t/m 2007, en over een 10 jaar-periode rond het jaar 2100.  

Het resultaat laat zich vangen in onderstaande afbeelding.
De kleurcode geeft daarin aan het jaargemiddelde aantal EPP’s en SEPP’s per 100*100 – blok in de periode rond 2000 en de periode rond 2100.
Als de EPP’s en de SEPP’s gelijkmatig verdeeld zouden zijn (wat niet zo is) zou het aantal EPP’s van 24 naar 175 per 100*100km gaan (*7,4), en het aantal SEPP’s van 0,7 naar 7,2 (*bijna 11).


In de afbeelding hieronder het maandgemiddelde aantal gebeurtenissen (EPP, SEPP, >100mm/uur en >200mm/uur) in het onderzoeksgebied als geheel, voor alle maanden. Dit om het seizoenseffect te tonen.
Als je de vertikale as door 880 deelt, heb je het gemiddelde aantal per maand op 100*100km.

Klimatologische oorzaken: vochtige lucht en de veranderende straalstroom
De pers zegt dat de heviger regenval komt omdat er meer waterdamp in de lucht zit, waardoor er bij een bui meer uitkomt. Dat is waar: de natuurkunde van de dampspanning (die in een grijs verleden nog op het curriculum van het VWO stond) leert dat in de praktisch bestaande omstandigheden van de atmosfeer elke °C meer temperatuur leidt tot 7% meer mogelijke waterdamp in de lucht (dus als die lucht verzadigd is).
Een bijkomend element, zegt Kahraman, is dat in de zomermaanden de stijgsnelheid van de vochtige drempel vaker boven de drempel van 2m/sec komt.
In feite legt de pers hier dus een EPP uit.
Ook Kuipers Munneke legt op Nieuwsuur een EPP uit (zonder dat zo te noemen). Kuipers Munneke zegt dat de combinatie van beide effecten (vochtiger lucht en meer stijgsnelheid) erop neer komt dat 10 C warmer 15% meer regen betekent.

Om uit te leggen waarom het aantal SEPP’s nog meer stijgt dat het aantal EPP’s, is een aanvullende verklaring nodig.
Een buiencomplex reikt tot grote hoogte en de verplaatsingssnelheid van het complex aan de grond hangt daardoor af van de windsnelheden op grote hoogte. Kahraman suggereert dat zijn uitkomsten verklaard kunnen worden door aan te nemen dat de klimaatverandering de straalstroom ’s winters versnelt en ’s zomers vertraagt. De winterstormen zouden dan sterker moeten worden.

Het laatste wetenschappelijke woord is er nog niet over gezegd.

Waarom doet het klimaat iets met de straalstroom?
Eerst: wat is de straalstroom?
De straalstroom is een soort meanderende rivier van lucht op 10 km hoogte. Zie ter illustratie een afbeelding van de National Weather Service van de VS (dienst NOAA). Die legt het mooi uit op www.weather.gov/jetstream/longshort/  .

De wind binnen de straalstroom gaat hard (kleine 200km/uur). Daarom duurt een vliegreis van de VS naar Europa korter dan andersom en zijn er vogels die hem voor de trek gebruiken.
Het patroon van de straalstroom als geheel beweegt meestal langzaam naar het oosten, maar soms staat het stil of schuift zelfs terug.
De straalstroom op grote hoogte heeft invloed op de hoge- en lagedrukgebieden op de grond. Bij een bult naar buiten ligt aan de Noordkant een  gebied waar de lucht, tegen de klok indraaiend omhoog komt – aan de grond ligt dan een lagedrukgebied of depressie. Bij een bult naar binnen ligt aan de zuidkant een gebied waar de lucht, met de klok meedraaiend, omlaag gaat – aan de grond ligt dan een hogedrukgebied.
Stijgende lucht (in  een lagedrukgebied) koelt af en regent uit – boven Limburg lag dus een depressie. Dalende lucht warmt op en is droog – in het recente bosbrandgebied in het westen van Canada en de VS, en in de afbeelding in Spanje.
Dit alles is te simpel verteld. In werkelijkheid is de straalstroom, en zijn relatie met wat aan de grond gebeurt, een complex en dynamisch proces. OP het eind van dit verhaal een mooie simulatie van de NASA.

Maar simpel is daarentegen weer dat de straalstroom natuurkundig in essentie een warmtemachine is die opereert bij de gratie van een temperatuurverschil. Net als een straalmotor warmte in beweging omzet bij de gratie van een temperatuurverschil tussen pakweg 2500°C binnen de motor en -40°C erbuiten, zo zet de straalstroom warmte om in beweging bij de gratie van een temperatuurverschil tussen evenaar en polen (in dit geval de Noordpool).

De extra broeikasgassen in de atmosfeer verwarmen de polen twee tot drie keer zo snel als de evenaar. In  meteorologenjargon heet dat de Arctic Amplification. Kahraman verwijst daarnaar.
Daardoor wordt met name ’s zomers het verschil tussen pool en evenaar kleiner, en daarmee ook de drijvende kracht van de straalstroom. Stilstaande weerpatronen worden waarschijnlijker en daarmee is de toename van de S in SEPP uitgelegd.
Omdat het temperatuurverschil tussen evenaar en pool in de winter groter is dan in de zomer, is het verklaarbaar dat SEPP’s vooral in de zomer bestaan.

Zolang de klimaatverandering het temperatuurverschil tussen evenaar en polen blijft terugdringen, is het SEPP-probleem structureel.

Dit is een still uit een mooie NASA-simulatie van de straalstroom. Het complexe karakter wordt in bewegende beelden veel duidelijker. De speelduur is ongeveer een maand in juni en juli 1988.
De animatie is te vinden op http://www.weather.gov/media/jetstream/constant/jetstreamanimation.mp4 .

Voor een eerder artikel (al weer december 2014) op deze site zie Extreem weer, straalstroom en klimaat en (uit 2021) Artikel over hittegolf in Canada en profetisch over extreme regenval .

Artikel over hittegolf in Canada en profetisch over extreme regenval

In Change van 11 juli 2021 (van Romy de Weert) staat een beschouwing die een groep geleerden van top-instituten uitgebracht heeft, en die in eerste instantie gaat over de extreme hitte en resultarende bosbranden in Canada en de VS (in Lytton bijna 50 graad C, kort daarna brandde het grotendeels af). Het is uiterst waarschijnlijk dat dit zonder de klimaatopwarming niet gebeurd was.

Vanwege de uniciteit van de hittegolf is het moeilijk statistische betrouwbaar iets te zeggen. De geleerden handelen alsof dit een zeer zeldzame gebeurtenis binnen gangbare klimaatscenario’s tot nu toe, maar noemen voor verder onderzoek dat hier een ‘tipping point’ gepasseerd is ( ‘The second option is that nonlinear interactions in the climate have substantially increased the probability of such extreme heat, much beyond the gradual increase in heat extremes that has been observed up to now. We need to investigate the second possibility further, although we note the climate models do not show it‘)

Het oorspronkelijke artikel waarop Change zich baseerde, is te vinden op www.worldweatherattribution.org/western-north-american-extreme-heat-virtually-impossible-without-human-caused-climate-change/ . Op deze webpagina een downloadmogelijkheid van het oorspronkelijke onderzoek zelf.
Het artikel in Change dat er op gebaseerd is is te vinden op www.change.inc/advies-en-dienstverlening/kans-op-extreme-weersomstandigheden-neemt-razendsnel-toe-ook-in-nederland .

Lytton op 01 juli 2021

In tweede instantie gaat het artikel in Change over Nederland.
De koppeling is dat aan het oorspronkelijke hitte-onderzoek is dat bij bovengenoemde grep geleerden ook twee mensen van het KNMI zaten (Sjoukje Y. Philip en Geert Jan van Oldenborgh), en directeur Maarten van Aalst, directeur van het Klimaatcentrum van het internationale Rode Kruis (ik wist niet eens dat dat bestond). Van Aalst is ook hoogleraar in Twente.
Verder onderzoekers van de internationale crème de la crème topuniversiteiten.

Vanwege de Nederlandse connectie interviewde Van Weert Maarten van Aalst voor wat uiteindelijk uiteindelijk bovengenoemd atikel in Change werd.
Vam Aalst nam de gelegenheid te baat om ook naar de Nederlandse rampenpreparatie te kijken.

Zo zijn hittegolven in Nederland tien keer waarschijnlijker geworden. “Hitte in Nederland is echt iets waar we ons zorgen om moeten maken”, aldus Van Aalst. De afgelopen twee jaar was hitte in Europa de dodelijkste ramp in de wereld, en als we niet oppassen staat Nederland straks boven aan de lijst. “Het hitteprobleem is iets wat bijna niemand zich realiseert. We denken vaak aan een leuke dag aan het strand, maar voor kwetsbare groepen is het een ramp.

Waarna Van Aalst over extreme regenval begon. “Maar ook de kans op extreme regenval is de afgelopen jaren door klimaatverandering steeds groter geworden“.
Dit bleek profetisch. Het Change-artikel dateerde van 11 juli 2021 en een paar dagen later stond Limburg en aangrenzend Duitsland en België onder water. Dd dat dit artikel geschreven werd, stond het dodental in Duitsland op 49.

Hieronder het artikel in Change van 11 juli 2021.

Heerlen, 14 juli 2021

‘De kans op extreme weersomstandigheden neemt razendsnel toe, ook in Nederland’

De extreme hitte in Canada en delen van de VS wordt overduidelijk veroorzaakt door klimaatverandering. Dat blijkt uit een recent onderzoek waar meerdere Nederlandse instituten aan meewerkten. De kans op extreme weersomstandigheden, zoals hittegolven neemt toe, ook in Nederland. Hoe kunnen we ons hierop voorbereiden?

Canada en delen van de VS werden vorige week getroffen door extreme hitte met bosbranden tot gevolg. Een groep internationale onderzoekers – waaronder een aantal uit Nederland – analyseerde de hittegolf. Wat blijkt? De hittegolf had nooit plaatsgevonden zonder door de mens veroorzaakte klimaatverandering.

Maarten van Aalst, directeur van het Klimaatcentrum van het internationale Rode Kruis en hoogleraar aan de Universiteit Twente is medeauteur van het onderzoek. “Twintig jaar geleden wilde de gemiddelde klimaatwetenschapper geen link leggen tussen klimaatverandering en hitte, omdat het weer vaak grillig van zichzelf is. Inmiddels kijken we daar anders naar”, zegt Van Aalst. De onderzoekers keken naar trends in zulke extremen in de waarnemingen van de afgelopen decennia. Vervolgens vergeleken ze met behulp van klimaatmodellen de resultaten mét en zonder de uitstoot van broeikasgassen. “De kans dat extreme weersomstandigheden zoals hitte voorkomen is razendsnel toegenomen. Ook in Nederland”, zegt Van Aalst.

Zo zijn hittegolven in Nederland tien keer waarschijnlijker geworden. “Hitte in Nederland is echt iets waar we ons zorgen om moeten maken”, zegt de wetenschapper. De afgelopen twee jaar was hitte in Europa de dodelijkste ramp in de wereld, en als we niet oppassen staat Nederland straks boven aan de lijst. “Het hitteprobleem is iets wat bijna niemand zich realiseert. We denken vaak aan een leuke dag aan het strand, maar voor kwetsbare groepen is het een ramp.”

Extreme regenval en overstromingen

“Bij klimaatverandering in Nederland denkt iedereen gelijk aan een stijgende zeespiegel. En dat is ook hoe we er klassiek over nadenken met risicomanagement”, vertelt Van Aalst. “Bij tien centimeter zeespiegelstijging verhogen we onze dijken met tien centimeter en dan zijn we weer veilig. Maar ook de kans op extreme regenval is de afgelopen jaren door klimaatverandering steeds groter geworden.”  Die twee – zeespiegelstijging én de kans op extremere regenbuien, zorgt dat het lastiger wordt om van het water af te komen. “Met die gedachte hebben we maatregelen uitgevoerd om het water weg te krijgen. Maar tegelijkertijd zag je dat droogte in Nederland afgelopen zomer een groot probleem was.”

Van Aalst ziet dat er meerdere problemen zoals extreme regenval en droogte steeds erger worden. “Oplossingen voor het ene probleem kunnen het andere probleem versterken. Het is belangrijk om op zowel lokaal als landelijk niveau te kijken naar hoe we ons kunnen voorbereiden op extremer weer.” Zo werd Europa in 2003 getroffen door een extreme hittegolf waarbij tienduizenden doden vielen. “Er werden toen in Nederland nog geen hittewaarschuwingen afgegeven. Toen we in 2006 opnieuw aan de beurt waren is er besloten dat we hitte serieuzer moeten nemen.” Inmiddels bestaat er een nationaal hitteplan. “Als het KNMI een hittegolf ziet aankomen gaat er een hitte-alarm af. Er worden dan bepaalde protocollen in ziekenhuizen en verpleeghuizen gehanteerd die de kwetsbaren moeten beschermen. Maar er zijn ook een hele hoop kwetsbaren die op zichzelf wonen. Hoe bereiken we die dan?”

Limburg 13 juli 2021 (foto NOS)

Lokaal en landelijke maatregelen voeren

Daar ligt volgens Van Aalst de grootste uitdaging. De groep kwetsbaren bereiken waar geen oogje in het zeil gehouden wordt. “Op korte termijn kunnen steden denken aan koelcentra creëren in bijvoorbeeld gymzalen en overheidsgebouwen, waar airco en voldoende drinkwater is.” Op lange termijn moeten steden de vraag stellen: hoe houden we onze stad koel?  “In Den Haag is de Schildersbuurt een hitte-hotspot. Die buurt kun je verkoelen door meer groen te planten. Maar je ziet dat het beleid soms niet aansluit bij de echte nood, want de meeste subsidies voor vergroening gaan naar plekken in de stad die al groen zijn”, zegt Van Aalst.

De verlate aanpak tegen hitte in Nederland is volgens Van Aalst te verklaren omdat extreme warmte nieuw is voor ons land. “Oorspronkelijk hebben we hitte in Nederland nooit als een probleem ervaren. Daarom lopen de plannen nog achter. We moeten het dus heel praktisch aanpakken: wat kunnen we per stad doen om een extreme weerssituatie voor te zijn?”

Zie https:// .

Hoofdinfrastructuurnetwerken gevoelig voor schade door veranderend klimaat

Het Kennis instituut voor Mobiliteit (KiM) is de officiele instantie die in Nederland onderzoek doet naar mobiliteitsstrategieën. Het KiM heeft op 01 juli 2021 een studie uitgebracht naar de invloed van het veranderend klimaat op de Nederlandse infrastructuur.
Ik heb dit persbericht dd 01 juli 2021 hieronder overgenomen. Afbeeldingen zijn uit de publieksbrochure overgenomen.

De algemene pagina van het KiM over dit onderwerp is http://www.kimnet.nl/publicaties/rapporten/2021/07/01/klimaatverandering-en-het-mobiliteitssysteem .



Door klimaatverandering neemt de kans op schade aan de infrastructuur toe, als gevolg van droogte, hitte, hevige neerslag of stormen. Dit schrijven onderzoekers van het KiM in een studie naar de klimaatverandering en de invloed daarvan op het mobiliteitssysteem. Ze brengen in kaart waar de Nederlandse hoofdinfrastructuur van wegen, spoorwegen en vaarwegen gevoelig is voor het oplopen van schade door het klimaat. En ze beschrijven hoe het gebruik van deze infrastructuur en de activiteiten van mensen en bedrijven kunnen veranderen. Daarnaast verkennen de onderzoekers wat het voor het mobiliteitssysteem betekent als we op termijn te maken krijgen met een grote zeespiegelstijging en maatregelen om daarmee om te gaan.

Voor de effecten op de kortere termijn, tot 2050, zijn de onderzoekers van het KiM in hun studie Klimaatverandering en het mobiliteitssysteem uitgegaan van literatuur, diepte-interviews en expertsessies met Rijkswaterstaat, ProRail en Deltares. De klimaatgevoeligheidskaarten van de infrastructuur hebben ze gebaseerd op stresstesten van Rijkswaterstaat en ProRail. De gevolgen van het klimaat voor het gebruik van infrastructuur baseren ze op literatuur en op basiskennis over personenmobiliteit en logistiek. De verkenning van de gevolgen van een grote zeespiegelstijging op langere termijn is gedaan aan de hand van adaptiestrategieën die Deltares heeft ontwikkeld voor Nederland.

Gevoeligheid hoofdinfrastructuurnetwerken

Op het hoofdwegennet vormen verzakkingen door bodemdaling – een gevolg van droogte – een relatief groot risico. Wegen in het westen en noorden van het land zijn het meest gevoelig voor verzakkingen. Ook voor hoofdvaarwegen levert droogte een groot risico; droogte zorgt voor lage rivierafvoeren en mogelijk onvoldoende diepte voor de scheepvaart. De gevoeligheid voor onvoldoende diepte is groot op de Waal rond Nijmegen en op locaties op de IJssel en het bovenstroomse traject van de Nederrijn. Voor spoorwegen bestaat niet één duidelijk grootste risico. Grote delen van het spoor zijn gevoelig voor schade of beperkte functionaliteit door wateroverlast of hitte, zoals het onderwaterlopen van tunnels of het niet kunnen sluiten van beweegbare bruggen door hitte-uitzetting.

Mogelijke adaptatiemaatregelen zijn divers en verschillen per gebeurtenis en per type infrastructuur. Soms kan intensief en gepland beheer en onderhoud (B&O) grotere en dure herstelmaatregelen aan de infrastructuur voorkomen. Maar vaak gaat het om grootschalige, preventieve maatregelen op het gebied van vervanging en renovatie (V&R).  

Gevolgen voor gebruikers van infrastructuur en hun activiteiten

Klimaatschade aan de infrastructuur levert in 2050 voor gebruikers naar verwachting vooral ongemak van tijdelijke aard. Voor weggebruikers ligt omrijden via een andere route vaak voor de hand, maar ook het gebruiken van een andere vervoerwijze of thuiswerken. Treinreizigers kunnen ook voor deze opties kiezen, ook al hebben zij voor omrijden meestal minder routealternatieven dan weggebruikers. Voor het spoorgoederenvervoer en binnenvaart is omrijden en -varen meestal geen optie. Bij laagwater op de rivieren zal de binnenvaart vaak kiezen voor het minder zwaar beladen van schepen (zoals ook gebeurde in de drie droge jaren 2018, 2019 en 2020). 

De effecten van zeespiegelstijging op het mobiliteitssysteem

Deltares heeft vier adaptatiestrategieën ontwikkeld om met grote zeespiegelstijging om te gaan. Twee ervan richten zich op het beter beschermen van de huidige kust, één gaat uit van het zeewaarts bewegen met nieuwe eilanden en één strategie is gericht op meebewegen. Meebewegen bestaat uit het ophogen van gebieden (terpen), het drijvend maken van bebouwing en infrastructuur en het migreren van de bevolking naar hoger gelegen delen van het land. 

De verkenning van het KiM wijst uit dat de effecten op het mobiliteitssysteem sterk verschillen per strategie. Bijvoorbeeld bij ‘beschermen’ verandert er minder aan de ruimtelijke inrichting van Nederland dan bij ‘zeewaarts’ en ‘meebewegen’. Bij ‘zeewaarts’ kan nieuwe infrastructuur (bruggen, dijken) nodig zijn tussen de nieuwe eilanden onderling en als verbinding met de kust; op de eilanden komen mogelijk zee- of luchthavens. ‘Meebewegen’ kan leiden tot meer verplaatsingen over water, maar ook tot de aanleg van bruggen tussen terpen. Bij migratie naar hogere delen van het land wordt daar de bebouwingdichtheid groter en komt er meer vraag naar infrastructuur en mobiliteit.

Brochure

Er is ook een brochure over het onderzoek Klimaatverandering en het mobiliteitssysteem beschikbaar.

Zie ook